Bacterial adaptation through distributed sensing of metabolic fluxes
نویسندگان
چکیده
The recognition of carbon sources and the regulatory adjustments to recognized changes are of particular importance for bacterial survival in fluctuating environments. Despite a thorough knowledge base of Escherichia coli's central metabolism and its regulation, fundamental aspects of the employed sensing and regulatory adjustment mechanisms remain unclear. In this paper, using a differential equation model that couples enzymatic and transcriptional regulation of E. coli's central metabolism, we show that the interplay of known interactions explains in molecular-level detail the system-wide adjustments of metabolic operation between glycolytic and gluconeogenic carbon sources. We show that these adaptations are enabled by an indirect recognition of carbon sources through a mechanism we termed distributed sensing of intracellular metabolic fluxes. This mechanism uses two general motifs to establish flux-signaling metabolites, whose bindings to transcription factors form flux sensors. As these sensors are embedded in global feedback loop architectures, closed-loop self-regulation can emerge within metabolism itself and therefore, metabolic operation may adapt itself autonomously (not requiring upstream sensing and signaling) to fluctuating carbon sources.
منابع مشابه
Host-adapted metabolism and its regulation in bacterial pathogens
Citation: Dandekar T and Eisenreich W (2015) Host-adapted metabolism and its regulation in bacterial pathogens. The mutual interaction between bacterial pathogens and their host organisms is a key feature of virulence. Since bacterial pathogens are highly specific in their infection behavior against different host organisms, cell types and cell compartments, the host-pathogen interplay is cruci...
متن کاملNeuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress
Citation: Jayakumar S and Hasan G (2018) Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress. Front. Neural Circuits 12:25. doi: 10.3389/fncir.2018.00025 All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appr...
متن کاملMetabolic Adaptation and Protein Complexes in Prokaryotes
Protein complexes are classified and have been charted in several large-scale screening studies in prokaryotes. These complexes are organized in a factory-like fashion to optimize protein production and metabolism. Central components are conserved between different prokaryotes; major complexes involve carbohydrate, amino acid, fatty acid and nucleotide metabolism. Metabolic adaptation changes p...
متن کاملINHIBITORY EFFECT OF STEVIA AND ROSA EXTRACTS AGAINST BACTERIAL QUORUM SENSING
Background & Aims: Quorum Sensing is a mechanism by which orchestrate the expression of many genes in bacteria. Therefore, any interference with the system will inhibit bacterial infections. The principal purpose of the research was to evaluate the potential of anti-quorum sensing of Rosa damascena and Stevia rebaudiana against Staphylococcus aureus. Materials & Methods: Ten isolates of Staphy...
متن کاملStimulus perception in bacterial signal-transducing histidine kinases.
Two-component signal-transducing systems are ubiquitously distributed communication interfaces in bacteria. They consist of a histidine kinase that senses a specific environmental stimulus and a cognate response regulator that mediates the cellular response, mostly through differential expression of target genes. Histidine kinases are typically transmembrane proteins harboring at least two doma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2010